Proton-induced reactions on the 9Be target are considered as a neutron source, and dependence of neutron yield on target thicknesses is investigated. The optimal thickness of the 9Be target with the design and optimization characteristics of a beam shaping assembly (BSA) for neutron flux from the thick target is studied with the GEANT4 program. To create the realistic model of the experiment, there are inserted two physics lists for nuclear and electromagnetic reactions. To get a high flux of neutrons had taken into account usage of special materials as moderators on the base of (n, 2n) nuclear reactions, as well as, moderators which will decrease the energy of neutrons to achieve the appropriate thermal/epithermal neutron flux. The creation of the system, which must be made from reflectors and moderators, is a necessity to explore the possibility of an appropriate neutron flux achievement for medical purposes, especially for boron neutron capture therapy (BNCT). GEANT4 simulations of this scientific paper describe the study of IBA’s C18/18 cyclotron-based neutron sources and its possible usage for therapies.