Normal microwave (MW) electromagnetic field detectors convert microwave power into voltages, which results in loss of the vector characteristics of the microwave field. In this work, we developed a MW magnetic field (h-field) vector detector based on the off-resonant spin rectification effect. By measuring and analyzing the angle dependence of the rectification voltages under off-resonant conditions, we can extract the three components of the h-field. As an initial test of this method, we obtained the h-field distributions at 5.4 GHz generated by a coplanar waveguide with sub-wavelength resolution. Compared to methods using ferromagnetic resonance, this technique offers a faster and more convenient way to determine the spatial distribution of the h-field, which can be used for MW integrated circuit optimization and fault diagnosis.