Next-generation optical communication networks aim to vastly increase capacity by exploiting a larger optical transmission window covering the S-C-L-band. Simultaneously, the clear market trend is to maximize capacity per wavelength to reduce operational costs. This approach requires an increase in spectral efficiency, resulting in stringent requirements on the transceivers, which may not be satisfied in a multi-band (MB) scenario by current commercial components designed for operation in C-band. Transceiver specifications for MB operation can be relaxed through additional digital signal processing (DSP), at the cost of additional complexity, and by more resourceintensive calibration procedures. In this context, we experimentally characterize the wavelength-dependent frequency-resolved in-phase/quadrature (I/Q) imbalance of a standard C-band IQmodulator and coherent receiver operating in an S-C-L-band system utilizing receiver-side DSP. This operation allows us to understand the nature of the wavelength-dependency of I/Q imbalance in MB systems. In the considered scenario, we validate the effectiveness of a cost-effective strategy for transceiver impairments mitigation and monitoring based on standard wavelengthindependent calibration and reduced-complexity DSP.