Purpose. Analyzing the stress distribution in the metal structure of the gantry crane under the cyclic operation mode and identifying stress concentrators in the crane column to assess the survivability of the machine. Methodology. In order to achieve the objective, the methods employed included analytical calculation method, finite element method, as well as differential and integral calculus methods. To study the state of the metal structure of the gantry crane, namely the column, the program Solid Works and its application Simulation were used. Findings. Using the CAD/CAE-system, the loaded condition of the metal structure of the gantry crane was modeled and the maximum working loads were determined, and a calculated scheme of their operation was constructed. The method is presented for calculation of survivability of load-bearing elements of the crane taking into account coefficients of intensity and concentration of stresses which allow defining speed of growth of cracks in dangerous stress zones of a metal structure. Originality. The existing methods for designing crane metal structures gained their traction. The integrated technique for assessing crane reliability has been suggested for the first time. This technique is focused on estimating the survivability of components elements. For the first time solid-state models of the crane and its column have been developed; the analysis of the stress-strain state of the column was performed, maximum stresses were determined, stress concentration points in the metal structure of the column were identified and recommendations for improvement of stress zones were presented. Practical value. The presented method for assessing the reliability of metal structures of gantry cranes can be implemented in the practice of design organizations for the development, design of new gantry cranes and modernization of existing ones. The obtained results provide an opportunity to assess the accumulated damage in the elements of the metal structure, to predict the development of defects to a critical size, as well as to decide on the further operability of a gantry crane.