2017
DOI: 10.1016/j.jmgm.2017.04.005
|View full text |Cite
|
Sign up to set email alerts
|

In silico drug repurposing of FDA-approved drugs to predict new inhibitors for drug resistant T315I mutant and wild-type BCR-ABL1: A virtual screening and molecular dynamics study

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
12
0

Year Published

2018
2018
2024
2024

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 21 publications
(12 citation statements)
references
References 28 publications
0
12
0
Order By: Relevance
“…Regarding study design, we sought to investigate if the publications fit into a broad categorization of the in silico strategies. We found that most studies solely used computational methods without further testing their findings in other scientific settings (46.64%) ( Shah et al, 2012 ; Abazeed et al, 2013 ; Ain et al, 2013 ; Eichhorn et al, 2013 ; Emig et al, 2013 ; Leung et al, 2013 ; Liu et al, 2013 , 2020 , 2021 ; Menden et al, 2013 ; Naresh et al, 2013 ; Omotuyi et al, 2013 ; Singh et al, 2013 ; Chen, 2014 ; Dean et al, 2014 ; Xu and Wang, 2014 ; Chuang et al, 2015 ; Dunna et al, 2015 ; Gustafson et al, 2015 ; Hammad and Azam, 2015 ; Kaur et al, 2015 ; Paula et al, 2015 ; Rubio-Perez et al, 2015 ; Sarvagalla et al, 2015 ; Zhang et al, 2015 ; Brown et al, 2016 ; Gayvert et al, 2016 ; Lee et al, 2016 ; Shafique et al, 2016 ; Tan, 2016 ; Verma et al, 2016 ; Spiliotopoulos et al, 2017a , 2017b ; Jadhav and Karuppayil, 2017 ; Kabir et al, 2017 , 2018 , 2019 ; Khanam et al, 2017 ; Salentin et al, 2017 ; Sohraby et al, 2017 ; Ulfa et al, 2017 ; Arora and Singh, 2018 ; Barua et al, 2018 ; Fröhlich et al, 2018 ; Jubie et al, 2018 ; Juritz et al, 2018 ; Karube et al, 2018 ; Konidala et al, 2018 ; Lagarde et al, 2018 ; Mady et al, 2018 ; Montes-Grajales et al, 2018 ; Shi et al, 2018 ; Shin et al, 2018 ;…”
Section: Resultsmentioning
confidence: 99%
“…Regarding study design, we sought to investigate if the publications fit into a broad categorization of the in silico strategies. We found that most studies solely used computational methods without further testing their findings in other scientific settings (46.64%) ( Shah et al, 2012 ; Abazeed et al, 2013 ; Ain et al, 2013 ; Eichhorn et al, 2013 ; Emig et al, 2013 ; Leung et al, 2013 ; Liu et al, 2013 , 2020 , 2021 ; Menden et al, 2013 ; Naresh et al, 2013 ; Omotuyi et al, 2013 ; Singh et al, 2013 ; Chen, 2014 ; Dean et al, 2014 ; Xu and Wang, 2014 ; Chuang et al, 2015 ; Dunna et al, 2015 ; Gustafson et al, 2015 ; Hammad and Azam, 2015 ; Kaur et al, 2015 ; Paula et al, 2015 ; Rubio-Perez et al, 2015 ; Sarvagalla et al, 2015 ; Zhang et al, 2015 ; Brown et al, 2016 ; Gayvert et al, 2016 ; Lee et al, 2016 ; Shafique et al, 2016 ; Tan, 2016 ; Verma et al, 2016 ; Spiliotopoulos et al, 2017a , 2017b ; Jadhav and Karuppayil, 2017 ; Kabir et al, 2017 , 2018 , 2019 ; Khanam et al, 2017 ; Salentin et al, 2017 ; Sohraby et al, 2017 ; Ulfa et al, 2017 ; Arora and Singh, 2018 ; Barua et al, 2018 ; Fröhlich et al, 2018 ; Jubie et al, 2018 ; Juritz et al, 2018 ; Karube et al, 2018 ; Konidala et al, 2018 ; Lagarde et al, 2018 ; Mady et al, 2018 ; Montes-Grajales et al, 2018 ; Shi et al, 2018 ; Shin et al, 2018 ;…”
Section: Resultsmentioning
confidence: 99%
“…The discovery of these drugs is based on (i) clinical trials results, (ii) random observations, (iii) the biological background of a disease, or (iv) in vitro and (v) in silico high-throughput screenings [ 107 ]. There are also many studies investigating drug repurposing in different subtypes of hematological malignancies [ 113 , 114 , 115 , 116 , 117 , 118 , 119 , 120 , 121 ]. Concerning CLL, 2816 compounds were studied in vitro and 102 of them influenced the lymphocytes of all six CLL patients tested.…”
Section: Drug Repurposing In Cllmentioning
confidence: 99%
“…In silico systems pharmacology has been recognized as one such method to identify drugs. Structural modeling [3][4][5][6] , metabolic network modeling 7,8 , and unbiased machine learning approaches that leverage large proteomic or expression datasets [9][10][11] have all been used to filter through long lists of chemicals to identify putative therapeutics with a higher likelihood of being useful against cancer or microbial infections. There is great potential for systems pharmacology approaches in development of treatments against heart failure and cardiac injury [12][13][14] .…”
Section: Introductionmentioning
confidence: 99%