IntroductionThe creation of models of the integrated functions of genes and proteins in cells is of fundamental and immediate importance to the emerging field of computational systems biology. Some of the most successful attempts at cell-scale modeling to date have been based on piecing together networks that represent hundreds of experimentally-determined biochemical interactions, while others have been very successful at inferring statistical networks from large amounts of high-throughput data. These networks (metabolic, regulatory, or signaling) can be analyzed, and predictions about cellular behavior made and tested. Many types of models have been built and applied to study cellular behavior and in this review we focus on two broad types: biochemical network models and statistical inference models. Through iterative model prediction, experimentation, and network refinement, the molecular circuitry and functions of biological networks can be elucidated. The construction of genomescale models that integrate the myriad components that produce cellular behavior is a fundamental goal of systems biology today.
Biochemical Reaction NetworksBiochemical reaction networks represent the underlying chemistry of the system, and thus at a minimum represent stoichiometric relationships between inter-converted biomolecules. The stoichiometry of biochemical reaction networks can now be reconstructed at the genome-scale, and at smaller scale with sufficient detail to generate kinetic models. These biochemical reaction networks represent many years of accumulated experimental data and can be interrogated in silico to determine their functional states. Genome-scale models based on biochemical networks provide a comprehensive, yet concise, description of cellular functions.For metabolism the reconstruction of the biochemical reaction network is a well-established procedure [1][2][3][4][5][6][7], while methods for the reconstruction of the associated regulatory [8,9] and signaling networks [10][11][12] with stoichiometric detail are being developed. The typically used formalism is to reconstruct the stoichiometric matrix, where each row represents a molecular compound and each column represents a reaction. For metabolism, these networks are often focused on just the metabolites, where the existence of a protein that catalyzes this reaction is used to allow that reaction to be present in the network. It is also possible (and truer to the realities in the system) to represent the proteins themselves as compounds in the network, which enables the integration of proteomics, metabolomics, and flux data (Figure 1). For regulatory and signaling networks, the inclusion of the proteins as compounds is essential. This process * To whom correspondence should be addressed: ishmulevich@sytemsbiology.org. + Present Address: Department of Chemical and Biomolecular Engineering University of Illinois, Urbana-Champaign Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our c...