In recent years, there has been a growing understanding that a significant fraction of the eukaryotic proteome is intrinsically disordered, and that these conformationally dynamic proteins play a myriad of vital biological roles in both normal and pathological states. In this review, selected examples of intrinsically disordered proteins are highlighted, with particular attention for a few which are relevant in neurological disorders and in viral infection. Next, the underlying causes for the intrinsic disorder are discussed, along with computational methods used to predict whether a given amino acid sequence is likely to adopt a folded or unfolded state in the solution. Finally, biophysical methods for the analysis of intrinsically disordered proteins will be discussed, as well as the unique challenges they pose in this context due to their highly dynamic nature.