2021
DOI: 10.1016/j.biortech.2021.125444
|View full text |Cite
|
Sign up to set email alerts
|

In-situ biogas upgrading by bio-methanation with an innovative membrane bioreactor combining sludge filtration and H2 injection

Abstract: A bioreactor using membrane technologies was used to demonstrate the feasibility of in-situ bio-methanation coupled to industrial wastewater treatment for biogas upgrading. High biogas productivity (1.7 Nm 3 Biogas/m 3 Bioreactor/day) with high CH4 content (97.9%) was reached. In-situ bio-methanation did not affect the COD removal efficiency of anerobic digestion (>94%). Process resilience has been tested for both substrate overload and H2 intermittence injection. Recovery of high CH4 content after 7 days with… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

1
17
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 30 publications
(19 citation statements)
references
References 27 publications
1
17
0
1
Order By: Relevance
“…Accurate determination of H 2 concentrations can also be problematic and as noted, there are different ways of dealing with variability in experimental measurements, with some studies normalising gas composition to 100% and others not. In some cases, however, the observed MER is greater than the volumetric CO 2 production without CO 2 biomethanisation [21,30,33,45,66,68], strongly supporting an increase in VBP. A similar phenomenon of increases in VBP or VMP has been observed in other work on gas recirculation [83], though no clear mechanisms have been confirmed.…”
Section: Conclusion From Performance Analysis For Co 2 Biomethanisati...mentioning
confidence: 90%
See 3 more Smart Citations
“…Accurate determination of H 2 concentrations can also be problematic and as noted, there are different ways of dealing with variability in experimental measurements, with some studies normalising gas composition to 100% and others not. In some cases, however, the observed MER is greater than the volumetric CO 2 production without CO 2 biomethanisation [21,30,33,45,66,68], strongly supporting an increase in VBP. A similar phenomenon of increases in VBP or VMP has been observed in other work on gas recirculation [83], though no clear mechanisms have been confirmed.…”
Section: Conclusion From Performance Analysis For Co 2 Biomethanisati...mentioning
confidence: 90%
“…Other food industry substrates trialled include potato starch wastewaters [65] and bioethanol distillery effluents [66]. The former was tested in a thermophilic UASB reactor with different diffuser types and gas and liquid recirculation rates.…”
Section: Food Wastesmentioning
confidence: 99%
See 2 more Smart Citations
“…8 * (国研)国立環境研究所 資源循環領域 連絡先:〒 305 -8506 茨城県つくば市小野川 16 -2 QH 2 in:水素供給速度 QCO 2 in:CO 2流入 (生成) 速度 QNut in:栄養液供給速度 QSub in:廃棄物等原料供給速度 QGas cir:ガス循環速度 QNut cir:栄養液循環速度 QGas out:ガス流出速度 QNut out:栄養液流出速度 QSub out:原料流出速度 N:攪拌速度 F:担体充填率 (比表面積も考慮) の気液間物質移動係数 (kLa) を向上させることに焦点 を当ててきた。 rT=22.414 kLa(H2 l*−H 2 l)( 2 )こ こ で,rT (L/ (L ・ d)) は 水 素 の 気 液 間 移 動 速 度, 22.414 (L/mol) は標準状態における mol あたりの水素 体積,kLa は水素の気液間物質移動係数 (/h),H2 l* は 気相の水素分圧に平衡する溶存水素濃度 (mol/L),H2 l は液相における溶存水素濃度 (mol/L) である。2. 1 で 述べたように,ガス循環,散気装置,大きな比表面積の 濡れ界面形成,膜等によって kLa の向上が試みられてき た。図 3B において, kLa との関係では有効容積 VW (と くに液深),ガス循環速度 QGas cir, 攪拌速度 N, 担体充填 率 F が重要となってくる。表 2 に示すように,方式別 では in-situ 型と比較して ex-situ 型では明らかに高い kLa が得られている。Ex-situ 型の各方式においても, さまざまな因子によって kLa 水 素 の mol あ た り の メ タ ン 収 率 は そ れ ぞ り,中 温 域 に お い て は Methanobacteriales 目,Methasaetaceae 科[13][14][15][16] の,高 温 域 においては Methanothermobacter 属, Methanobacteriaceae 科6,10,11)…”
unclassified