A current subject of research is the application of magnetic effects for the detachment of accumulated particles of fibrous collectors in gas particle separation. Initial studies have already shown the magnetically induced detachment behavior of a compact particle structure after a single deflection from a single fiber. In this study, the detachment behavior of particle structures with different morphologies from a single fiber is investigated as a function of the particle loading stage on the fiber, the external magnetic flux density, the inflow velocity and the number of regenerations of the fiber for a certain parameter range. Diffusive and more compact particle structures with non-magnetic properties are deposited on the magnetizable single fiber. By applying an external magnetic field, the fiber is magnetized and experiences a torsional moment. The deposited particle structures on the fiber are detached by the acceleration forces. The detachment of the particle structures is observed using a high-speed camera and the image sequences are analyzed. By determining the projection area before and after the fiber deflection, a degree of regeneration is calculated. With magnetic-induced regeneration, high degrees of regeneration close to 100% can be achieved. Repetitive fiber deflections improve the detachment of the particle structures. The magnetic-induced regeneration is suitable for applications where flow reversal is not possible and can be performed either online or offline. Due to the gentle regeneration, fewer emissions are produced on the clean gas side than, for example, with jet pulse cleaning. It makes it easier to achieve emission limits and simplifies product recovery.