Today, one of the major challenges is to provide green and powerful energy sources for a cleaner environment. Rechargeable lithium-ion batteries (LIBs) are promising candidates for energy storage devices, and have attracted considerable attention due to their high energy density, rapid response, and relatively low self-discharge rate. The performance of LIBs greatly depends on the electrode materials; therefore, attention has been focused on designing a variety of electrode materials. Graphene is a two-dimensional carbon nanostructure, which has a high specific surface area and high electrical conductivity. Thus, various studies have been performed to design graphene-based electrode materials by exploiting these properties. Metal-oxide nanoparticles anchored on graphene surfaces in a hybrid form have been used to increase the efficiency of electrode materials. This review highlights the recent progress in graphene and graphene-based metal-oxide hybrids for use as electrode materials in LIBs. In particular, emphasis has been placed on the synthesis methods, structural properties, and synergetic effects of metal-oxide/graphene hybrids towards producing enhanced electrochemical response. The use of hybrid materials has shown significant improvement in the performance of electrodes.