The objective of the present study was to isolate endophytes from the roots of the halophyte Sesuvium portulacastrum, which is applied for aquatic phytoremediation. From these endophytes, siderophore-producing bacteria were specifically isolated for their potential capacity to promote plant growth. The siderophore production capacity of the isolated bacteria was quantified, and a high-yield siderophore-producing strain was selected for further investigation. A total of 33 endophytic bacteria were successfully isolated and identified using a culturable approach. Of these, 10 siderophore-producing bacteria were identified using the selective agar assay, displaying siderophore unit (SU) values ranging from 11.90% to 80.39%. It is noteworthy that Erwinia sp. QZ-E9 exhibited the highest siderophore production capacity, achieving an SU of 80.39%. A microcosm co-cultivation experiment was conducted with the strain QZ-E9 in iron-deficient conditions (2 μmol/L Fe3⁺). The results demonstrated that strain QZ-E9 significantly enhanced the growth of S. portulacastrum, by increases in both fresh weight (1.41 g) and root length (18.7 cm). Furthermore, fluorescence in situ hybridization (FISH) was utilized to ascertain the colonization pattern of strain QZ-E9 within the plant roots. The analysis demonstrated that strain QZ-E9 exhibited extensive colonization of the epidermal and outer cortical cells of S. portulacastrum roots, as well as the intercellular spaces and vascular tissues. This colonization indicated that Erwinia sp. QZ-E9 plays a crucial role in promoting the growth of S. portulacastrum, presumably through its siderophore-mediated iron acquisition mechanism.