Spectral reflectance from water surfaces was measured in small (0.01-5 km 2 ), turbid, eutrophic fishponds and mesotrophic quarry lakes in the Třeboň basin (South Bohemia, Czech Republic). A spectral scanner for direct field measurements from water surfaces and a hyperspectral airborne scanner were both used. The quarry lakes and fishponds differed in their spectral signature, which reflected the extent of their eutrophication. Their chlorophyll-a (chl-a) concentrations ranged from 2 to 455 lg/l -1 . Various algorithms were tested to best fit the relationships between reflectance patterns and the water-quality parameters used-concentration of chl-a and the total amount of suspended solids. The reflectance ratios at 714 and 650 nm gave the best estimates for chla concentrations, and simple reflectance at near infrared wavelengths, especially at 806 nm, gave the best predictive values for total suspended solid evaluation (r 2 = 0.89). Field surface reflectance and airborne sensing measurements were well correlated; however, airborne reflectance data showed higher variability (r 2 = 0.93 and 0.86, respectively). The results support the validity of reflectance measurements, both field and airborne, as a rapid tool for evaluating water quality in many turbid and greatly disturbed, small water bodies.