“…During photocatalysis, the separation of electron-hole pairs within the semiconductor catalysts, combined with the following energy transfer processes, can readily generate a large amount of highly active species (such as radicals and singlet oxygen [1][2][3][4] . Notably, these active species could, under green and mild conditions, participate in a variety of organic reactions, including hydrogenation 5,6 , epoxidation 7,8 , alcohol oxidation 9,10 , selective oxidation of aromatic compounds 11,12 , and even some reactions that are rather challenging in thermal catalysis. Yet still, currently for heterogeneous photocatalysts, there exist the common issues of rapid recombination of photocarriers and the resulting low e ciency of carrier separation and utilization, which would hamper the high-performance catalysis of sophisticated organic reactions, and thus their applications have so far been limited primarily to environment-related aspects such as degradation of organics, air puri cation and water photolysis [13][14][15][16][17] .…”