With the rapid developments of marine resource exploitation, mounts of marine engineering equipment are settled on the ocean. When it is not possible to move the damaged equipment into a dry dock, welding operations must be performed in underwater environments. The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment. The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique. First, we elaborated recent advances and key issues of drainage nozzles all over the world. Next, we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials. Then, the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed. The differences between the convection, conduction, and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated. After that, several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed. Finally, suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided. The present review will not only enrich the knowledge in the underwater repair technology, but also provide important guidance for the potential applications of the technology on the marine engineering.