“…The compatibility of the GISAXS method with a large number of sample environments enables in situ investigations. Systems investigated using GISAXS include, among others, nanostructures from metals or semi-conductors (Renaud et al, 2009), magnetic layers (Wang et al, 2017), nanoporous or nanocomposite films (Doshi et al, 2003;Gibaud et al, 2003;Lee, Park et al, 2005;Li et al, 2018;Alvarez-Fernandez et al, 2020), surface gratings (Soccio et al, 2015), layers of colloids or nanoparticles (Ukleev et al, 2017;Wu et al, 2018;Saxena & Portale, 2020;Engstro ¨m et al, 2020;Qdemat et al, 2020;Schaper et al, 2021), molecular layers (Guennouni et al, 2017), organic electronics from perovskites or polymers (Mu ¨ller-Buschbaum, 2018;Yin et al, 2022), and block copolymer thin films (Smilgies et al, 2002;Mu ¨ller-Buschbaum, 2003;Kim et al, 2004;Mu ¨ller-Buschbaum, Hermsdorf et al, 2004;Cavicchi et al, 2005;Lee, Park et al, 2005;Busch et al, 2007;Paik et al, 2010;Di et al, 2012;Ree, 2014;Mu ¨ller-Buschbaum, 2016;Posselt et al, 2017;Smilgies, 2021). Synchrotron radiation affords high time resolution (sub-second), and time-resolved investigations have elucidated growth and restructuring processes in a number of systems, such as the adsorption of sputtered metals on various substrates (Schwartzkopf et al, 2013), the crosslinking of nanoparticles into superlattices (Maiti et al, 2019), the structural changes in solar cells during storage and operation (Mu ¨ller-Buschbaum, 2014…”