The developmental sequence of the embryonic joint has been well studied morphologically. There are, however, no definitive studies of cell function during joint development. In order to begin to understand the differentiation events that contribute to joint formation, we examined the expression of collagen mRNAs encoding types I, IIA, IIB, and XI. In situ hybridization was performed on chicken embryo hind limb buds and digits from day 7 to day 18 (Hamburger and Hamilton stages 3144). In the day 7 (stage 31) limb bud, there was a condensation of mesenchyme forming the primitive tarsal and metatarsal bones that showed abundant expression of type IIA procollagen message, but no type IIB or type al(X1) message. By day 8 (stage 33), co-expression of types IIA, and type XI procollagen mRNAs was observed in the condensations, with expression of IIB restricted to early chondrocytes with metachromatically staining matrix. At this stage, DNA fragmentation characteristic of apoptosis was observed in cells near the midline of the interzone region between the developing anlagen, and in areas between and around the individual digits of the paddle. The presumptive apoptotic cells were more numerous at day 9 (stage 35), and were not found in the developing joint at subsequent time points, including the initiation of spatial cavitation of the joint. From days 11-18, type IIA procollagen mRNA was expressed in flattened cells at the surface of the anlagen, and in the perichondrium and in the developing joint capsule: type IIB mRNA message was found only in chondrocytes. Type XI mRNA was expressed by all type 11-expressing cells. Alpha l(1) mRNA was expressed early by cells of the interzone and capsule, but as cavitation progressed, the type I expressing cells of the interzone merged with the superficial layer of the articular surface. Thus, at the time of joint cavitation, there was a distinct pattern of expression of procollagen messages at the articular surface, with type I being outermost, followed by morphologically similar cells expressing type IIA, then chondrocytes expressing type IIB. The progenitor cells expressing type IIA message define a new population of cells. These cell populations contribute to the molecular heteroge-0