In this study, the production of full-density Cu-10Sn bronze parts by selective laser melting (SLM) technique and the examination of microstructural, mechanical and corrosion properties were carried out. Cu-10Sn pre-alloyed powders produced by gas atomization technique were shaped using SLM technique within selected parameters and then microstructural properties were determined. Depending on the microstructural properties, the mechanical and corrosion behaviors were determined. The obtained results were compared with similar bronze materials produced by conventional methods. Different characterization techniques were used for microstructural characterization. The microstructure of the Cu-10Sn alloy was observed to consist of dendritic primary α and δ-Cu41Sn11 phases. According to the mechanical test results of the samples produced at densities of 8.75 g cm-3 at room temperature, the yield strength was measured as 420 MPa, the tensile strength was 578 MPa, the elongation was 32 % and the hardness value was 160.3 HV0.2. For the electrochemical experiments, the corrosion rate of the samples was found to be 4.38 mpy. As a result of the productions and experiments, it was determined that the samples produced by the SLM method provide very good mechanical and corrosion properties compared to the literature.