Ion energy loss in the interaction between highly charged ions and dense plasmas near the Bohr velocity energy region is one of the important physical problems in the field of high-energy density physics driven by intense heavy ion beams. Based on the 320 kV experimental platform at the Institute of Modern Physics, Chinese Academy of Sciences, an experimental setup is newly built for the research of interaction between ions and laser-produced plasmas near the Bohr velocity, where the ion energy loss and charge state distribution can be experimentally investigated. This paper introduces the new setup in detail, including: the generation and controlling of pulsed ions beam ( ≥ 200 ns); the preparation of high-density laser plasma target (10<sup>17</sup> ~ 10<sup>21</sup> cm<sup>-3</sup>); the diagnostics of plasmas and the developed high energy resolution ion measurement system (<1%). In the experiment, the charge distribution was measured where the Xe<sup>15+</sup> ions with 4 MeV penetrated through the laser-produced Al plasma target. The charge-state analysis device observed that the different resutls without and with the plasmas, in which the outgoing Xe ions charge-state changes correspondingly from the 15+ to 10+, thus the electron capture process is believed dominates. In addition, the proton energy loss was measred too by using the magnetic spectrometer, and the experimental energy loss is about 2.0 keV which is significantly higher than those theoretical predictions by a factor of 30%. In our consideration, the possible reason can be deduced to that in the near Bohr velocity energy regime, the first-order Born approximation condition is not valid, thus the Bethe and SSM models fail to represent the experimental results. In future, a systematic study will be performed based on our ions-plasmas ineteraction setups and the energy loss and charge state data will be introduced.