Uniaxial straining experiments were performed on a rolled and annealed Si-alloyed TRIP (transformation-induced plasticity) steel sheet in order to assess the role of its microstructure on the mechanical stability of austenite grains with respect to martensitic transformation. The transformation behavior of individual metastable austenite grains was studied both at the surface and inside the bulk of the material using electron back-scattered diffraction (EBSD) and X-ray diffraction (XRD) by deforming the samples to different strain levels up to about 20%. A comparison of XRD-and EBSD-results revealed that the retained austenite grains at the surface have a stronger tendency to transform than the austenite grains in the bulk of the material.The deformation-induced changes of individual austenite grains before and after straining were monitored with EBSD. Three different types of austenite grains can be distinguished that have different transformation behaviors: austenite grains at the grain boundaries between ferrite grains, twinned austenite grains, and embedded austenite grains that are completely surrounded by a single ferrite grain. It was found that twinned austenite grains and the austenite grains present at the grain boundaries between larger ferrite grains typically transform first, i.e. are less stable, in contrast to austenite grains that are completely embedded in a larger ferrite grain. In the latter case, straining leads to rotations of the harder austenite grain within the softer ferrite matrix before the austenite transforms into martensite. The analysis suggests that austenite grain rotation behavior is also a significant contributing factor for enhancement of the ductility.