We report on a novel optical vortex array named circular optical vortex array, which is generated by the superposition of two concentric perfect optical vortices. The circular optical vortex array has a constant topological charge of +1 or −1, the number and sign of which are determined by the topological charges of the two perfect optical vortices. Moreover, the radius of the circular optical vortex array is easily adjusted by using the cone angle of an axicon. Furthermore, the circular optical vortex array and multiple circular optical vortex array can be rotated by changing the initial phase difference of the perfect optical vortices on demand. This work demonstrates a complex structured optical field, which is of significance for applications such as optical tweezers, micro-particle manipulation, and optical imaging.