In this communication, Co/Cu substituted Ni-Zn ferrites processed through sol-gel synthesis using polyethylene glycol (PEG) as a chelating agent are studied, intending to aid in understanding and choosing the optimum ferrite material for high frequency applications. Lattice constant and average crystallite size have been estimated from FWHM of the X-ray diffraction peaks, and these parameters are understood by considering the ionic radii of the substituted as well as the replacing ions. Observed variations in saturation magnetization and initial permeability for these ferrites have been explained on the basis of anisotropy contribution for cobalt and segregation of copper at grain boundaries evident from scanning electron micrographs.