Herein we report the synthesis and characterization of novel castor oil-based polyurethane (PU) foam functionalized with octadecyltrichlorosilane (C18)-modified diatomaceous earth (DE) particles, exhibiting superior hydrophobicity and oil adsorption, and poor water absorption, for use in effective clean-up of crude oil spillage in water bodies. High-performance and low-cost sorbents have a tremendous attraction in oil spill clean-up applications. Recent studies have focused on the use of castor oil as a significant polyol that can be used as a biodegradable and eco-friendly raw material for the synthesis of PU. However, biobased in-house synthesis of foam modified with C18-DE particles has not yet been reported. This study involves the synthesis of PU using castor oil, further modification of castor oil-based PU using C18 silane, characterization studies and elucidation of oil adsorption capacity. The FTIR analysis confirmed the fusion of C18 silane particles inside the PU skeleton by adding the new functional group, and the XRD study signified the inclusion of crystalline peaks in amorphous pristine PU foam owing to the silane cross-link structure. Thermogravimetric analysis indicated improvement in thermal stability and high residual content after chemical modification with alkyl chain moieties. The SEM and EDX analyses showed the surface’s roughness and the incorporation of inorganic and organic elements into pristine PU foam. The contact angle analysis showed increased hydrophobicity of the modified PU foams treated with C18-DE particles. The oil absorption studies showed that the C18-DE-modified PU foam, in comparison with the unmodified one, exhibited a 2.91-fold increase in the oil adsorption capacity and a 3.44-fold decrease in the water absorbing nature. From these studies, it is understood that this novel foam can be considered as a potential candidate for cleaning up oil spillage on water bodies.