Summary
In the past few years, dynamic computed tomography (CT) approaches or uninterrupted acquisitions of deforming materials have rapidly emerged as an essential technique to understand material evolution, facilitating in situ investigations ranging from mechanical deformation to fluid flow in porous materials and beyond. Developments at synchrotron facilities have led this effort, pointing to the future of the technique. In the laboratory, recent developments at TESCAN XRE have made it possible to image, reconstruct and inspect dynamic processes in the laboratory with a temporal resolution below 10 s, meaning that an entire acquisition from 0 to 360° is completed within 10 s. The aim of this study is to explore the challenges and innovations that have led to the ability to perform high speed, dynamic acquisitions. A unique horizontally rotating gantry based micro‐CT system was developed to facilitate complex in situ experiments. In doing so, the sample stays fixed while source and detector are uninterruptedly rotating around a vertical axis. In this work, the dynamic CT method with this rotating gantry based system will be described by two application examples: (1) deformation and collapse of a delicate beer foam and (2) in situ baking process of pastry. For the pastry baking process, an oven was needed to reach baking temperature. In a conventional micro‐CT system, where the sample rotates, it is not so obvious to rotate an oven with sensor and heating cables. On the other hand, the delicate foam of a collapsing beer head is able to rotate, but because of the tangential convection during fast rotation (<10 s), it could influence the bubble detachment and liquid drainage and thus also the foam degradation. To investigate both processes, a horizontally rotating gantry based micro‐CT is required. For both examples it was possible to quantify the key parameters such as pore size and distribution to better understand the rise and fall of porous foams. These examples will highlight the recent progress in adapting micro‐CT workflows to accommodate uninterrupted imaging of dynamic events and point to opportunities for future continued development.
Lay Description
Micro‐CT allows the nondestructive visualisation of internal structures and is being used routinely in the field of Material Science, Geoscience, Life Science and more. Because of its nondestructive aspect, micro‐CT is optimal to take repetitive scans of the same sample over time. The combination of taking different scans over time is so called time‐resolved CT. By doing so, crucial insights can be obtained on how materials form, deform and perform over time or under certain external conditions. TESCAN XRE have made it possible to image, reconstruct and inspect dynamic processes in the laboratory with a temporal resolution below 10 s. The dynamic CT method will be described through the lens of two application examples: (1) deformation and collapse of a delicate beer foam and (2) in situ baking process of pastry. These examples will highlight the recent prog...