This paper reports formation and dissociation patterns of methane hydrate in sandstone. Magnetic resonance imaging spatially resolved hydrate growth patterns and liberation of water during dissociation. A stacked core set-up using Bentheim sandstone with dual water saturation was designed to investigate the effect of initial water saturation on hydrate phase transitions. The growth of methane hydrate (P = 8.3 MPa, T = 1–3 °C) was more prominent in high water saturation regions and resulted in a heterogeneous hydrate saturation controlled by the initial water distribution. The change in transverse relaxation time constant, T2, was spatially mapped during growth and showed different response depending on the initial water saturation. T2 decreased significantly during growth in high water saturation regions and remained unchanged during growth in low water saturation regions. Pressure depletion from one end of the core induced a hydrate dissociation front starting at the depletion side and moving through the core as production continued. The final saturation of water after hydrate dissociation was more uniform than the initial water saturation, demonstrating the significant redistribution of water that will take place during methane gas production from a hydrate reservoir.