Process verification testing using in situ vitrification (ISV) was successfully performed in a pilot-scale test using soils containing fuel oils and heavy metals from Site 10 Installation Restoration Program (IRP) at the Arnold Engineering Development Center (AEDC) located in the southern portion of middle Tennessee . This effort was directed through the U.S. Department of Energy ' s Hazardous Waste Remedial Action Program (HAZWRAP) Office managed by Martin Marietta Energy Systems. In situ vitrification is a thermal treatment process that converts contaminated soils and wastes into a durable product containing glass and crystalline phases. During processing, heavy metals or other inorganic constituents are retained and immobilized in the glass structure; organic constituents are typically destroyed or removed and captured by the off-gas treatment system.The objective of this test is to verify the applicability of the ISV process for stabilization of the contaminated soil at Site 10 . The pilotscale ISV testing results, reported herein, indicate that the AEDC Site 10 Fire Training Area may be successfully processed by ISV. Site 10 is a fire training pit that is contaminated with fuel oils and heavy metals from fire training exercises. Actual site material was processed by ISV to verify its feasible application to those soils . Initial feasibility bench-scale testing and analyses of the soils determined that a lower-melting, electrically conductive fluxing additive (such as sodium carbonate) is required as an additive to the soil for ISV processing to work effecti vely . The actual Site 10 soils showed a larger degree of compositional variation than the soil used for the bench-scale test . This variation dictates that each vitrification setting should be analyzed to determine the composition as . a function of depth and location . This data will dictate the amount (if any) of fluxing add i tives of sodium and calci um to bring the melt composition to the recommended quantity of 5 wt% sodium and 5 wt% calcium oxide. Each variable additive adjustment would result in a vitrification melt composition of 5 wt% calcium and sodium oxide content .The pilot -scale operation created a vitrified block weighing 15 metric t onnes (t) and measuring 1. 5 m (5 ft) deep and 2. 4 m (8 ft) on each side .