Ureaplasma species (Ureaplasma spp.) are commonly found as commensals in the human urogenital tracts, although their overgrowth can lead to infection in the urogenital tract and at distal sites. Furthermore, ureaplasmas lack a cell wall and do not synthesize folic acid, which causes all β-lactam and glycopeptide antibiotics, and sulfonamides and diaminopyrimidines, to be of no value. The antibiotics used in therapy belong to the fluoroquinolone, tetracycline, chloramphenicol and macrolide classes. However, the growing incidence of antibiotic-resistant Ureaplasma spp. in the population becomes a problem. Thus, there is a need to search for new drugs effective against these bacteria. Since 1951, the FDA-approved, well-tolerated, inexpensive, orally administered drug disulfiram (DSF) has been used in the treatment of chronic alcoholism, but recently, its antimicrobial effects have been demonstrated. The main biological metabolite of DSF, i.e., N,N-diethyldithiocarbamate (DDC), is generally believed to be responsible for most of the observed pharmacological effects of DSF. In the presented studies, the effect of DDC at concentrations of 2 µg/mL, 20 µg/mL and 200 µg/mL on the growth and survival of Ureaplasma urealyticum and Ureaplasma parvum was tested for the first time. The results indicated that all the used DDC concentrations showed both bacteriostatic and bactericidal activity against both tested strains.