Primary phosphines (R-PH 2 ) are an important class of compounds in organophosphorus chemistry. Although discovered over a century ago, their chemistry and applications have gained prominence in recent years. This review discusses recent developments on synthesis, molecular structure, properties, and applications of primary phosphines. In particular, discussions on synthesis and properties emphasize recent results from our laboratory on the chemical architecture of amide, thioether, and carboxylate functionalized primary bisphosphines. The utility of bromo-and aminopropyl phosphines (X(CH 2 ) 3 PH 2 ; X=Br or NH 2 ) as building blocks to produce 'designer' primary phosphines that display exceptional oxidative stability is described. The review also discusses the utility of carboxylate functionalized primary phosphines for incorporation on to peptides and their potential applications in catalysis and biomedicine.