Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background and Objective Tinengotinib, a novel multi-target small molecule kinase inhibitor, is currently undergoing phase II clinical trial in the USA and China. The purpose of this open-label study was to investigate the absorption, metabolism, and excretion of [ 14 C]tinengotinib following a single oral dose in healthy subjects. Methods Six healthy male subjects received a single oral dose of [ 14 C]tinengotinib capsules at 10 mg/100 µCi, and blood, urine, and feces samples were collected. Phenotyping experiments were further conducted to confirm the enzymes involved in its metabolism. Results Tinengotinib was rapidly absorbed in plasma with a time to peak drug concentration ( T max ) of 1.0–4.0 h post-dose and a long terminal half-life ( t ½ ) of 23.7 h. Blood-to-plasma radioactivity concentration ratios across timepoints ranged from 0.780 to 0.827, which indicated minimal association of radioactivity with blood cells. The mean cumulative excreted radioactivity was 99.57% of the dose, including 92.46% (68.65% as unchanged) in feces and 7.11% (0.28% as unchanged) in urine. In addition to unchanged tinengotinib, a total of 11 radioactive metabolites were identified in plasma, urine, and feces. The most abundant circulating radioactivity was the parent drug in plasma, which comprised 88.23% of the total radioactivity area under the concentration–time curve (AUC). Metabolite M410-3 was a major circulating metabolite, accounting for 5.38% of the parent drug exposure and 4.75% of the total drug-related exposure, respectively. All excreted metabolites accounted for less than 5.10% and 1.82% of the dose in feces and urine, respectively. In addition, no unique metabolites were observed in humans. Tinengotinib was metabolized mainly via CYP3A4. Conclusions Overall, tinengotinib demonstrated a complete mass balance with limited renal excretion, no disproportionate blood metabolism, and slow elimination, primarily through the fecal route. The results of this study provide evidence to support the rational use of tinengotinib as a pharmacotherapeutic agent. Registration ChinadrugTrials.org.cn identifier: CTR20212852. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-024-00486-2.
Background and Objective Tinengotinib, a novel multi-target small molecule kinase inhibitor, is currently undergoing phase II clinical trial in the USA and China. The purpose of this open-label study was to investigate the absorption, metabolism, and excretion of [ 14 C]tinengotinib following a single oral dose in healthy subjects. Methods Six healthy male subjects received a single oral dose of [ 14 C]tinengotinib capsules at 10 mg/100 µCi, and blood, urine, and feces samples were collected. Phenotyping experiments were further conducted to confirm the enzymes involved in its metabolism. Results Tinengotinib was rapidly absorbed in plasma with a time to peak drug concentration ( T max ) of 1.0–4.0 h post-dose and a long terminal half-life ( t ½ ) of 23.7 h. Blood-to-plasma radioactivity concentration ratios across timepoints ranged from 0.780 to 0.827, which indicated minimal association of radioactivity with blood cells. The mean cumulative excreted radioactivity was 99.57% of the dose, including 92.46% (68.65% as unchanged) in feces and 7.11% (0.28% as unchanged) in urine. In addition to unchanged tinengotinib, a total of 11 radioactive metabolites were identified in plasma, urine, and feces. The most abundant circulating radioactivity was the parent drug in plasma, which comprised 88.23% of the total radioactivity area under the concentration–time curve (AUC). Metabolite M410-3 was a major circulating metabolite, accounting for 5.38% of the parent drug exposure and 4.75% of the total drug-related exposure, respectively. All excreted metabolites accounted for less than 5.10% and 1.82% of the dose in feces and urine, respectively. In addition, no unique metabolites were observed in humans. Tinengotinib was metabolized mainly via CYP3A4. Conclusions Overall, tinengotinib demonstrated a complete mass balance with limited renal excretion, no disproportionate blood metabolism, and slow elimination, primarily through the fecal route. The results of this study provide evidence to support the rational use of tinengotinib as a pharmacotherapeutic agent. Registration ChinadrugTrials.org.cn identifier: CTR20212852. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-024-00486-2.
Cholangiocarcinoma (CCA) is an uncommon but morbid cancer arising from the intrahepatic or extrahepatic bile ducts. CCA is frequently asymptomatic at early stages and is often unresectable or metastatic at the time of initial diagnosis. While chemotherapy remains the mainstay of treatment for most patients with advanced disease, the addition of immunotherapy to frontline treatment has improved survival and provided an alternative to perpetual chemotherapy. Furthermore, a variety of targeted therapies have demonstrated benefit in patients with specific biomarkers including FGFR2 fusions, IDH1 mutations, HER2 overexpression, and tumor agnostic markers such as NTRK and RET fusions, among others. This review will summarize the established roles of immunotherapy, targeted therapies, and their combinations in CCA as well as treatment strategies that are under development with potential to impact clinical practice in the coming years.
Among solid tumors, cholangiocarcinoma (CCA) emerges as one of the most difficult to eradicate. The silent and asymptomatic nature of this tumor, particularly in its early stages, as well as the high heterogeneity at genomic, epigenetic, and molecular levels delay the diagnosis, significantly compromising the efficacy of current therapeutic options and thus contributing to a dismal prognosis. Extensive research has been conducted on the molecular pathobiology of CCA, and recent advances have been made in the classification and characterization of new molecular targets. Both targeted therapy and immunotherapy have emerged as effective and safe strategies for various types of cancers, demonstrating potential benefits in advanced CCA. Furthermore, the deeper comprehension of the cellular and molecular components in the tumor microenvironment (TME) has opened up possibilities for new innovative treatment methods. This review discusses recent evidence in the characterization and molecular biology of CCA, highlighting novel possible druggable targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.