The joint efforts of chemists, physicians and technologists conducting researches to create new medical sorbents and combined drugs based on nanosilica, which have not only a detoxifying effect, but also antibacterial, wound healing, hemostatic and other important properties. One of the stages of such a research is developing regulatory documentation. To control the quality of the sorbent, the method of point measurements is most often used, according to it, the amount of adsorption of the marker substance at the single point of the adsorption curve is determined. The suitability of sorbents based on nanosilicа for using is determined by the value of the adsorption capacity concerning to medical gelatin. No other requirements for the process of test adsorption of gelatin by the sorbent are given. although it is known that the adsorption of proteins depends on the pH of the solution. Its maximum value is reached at a pH value corresponding to the isoelectric point (pI) of the protein. Each protein can be characterized by its own isoelectric point. Domestic and foreign standards give only the value of “pH of aqueous solutions” of gelatin and do not contain the indicator “isoelectric point”. The aim of the work is to study the influence of the isoelectric point of gelatin on its adsorption on nanosilica surface at different pH to appreciate the suitability of conditions for determining the adsorption activity of medical sorbents based on nanosilica. The adsorption of three samples of gelatin was examined in the work: A – edible gelatin (pI = 4.3–4.8); B – that from the catalog “Merck” (pI = 4.3–4.8) and C – that from the catalog “Fluka” (pI = 7.5–7.7) on nanosilica surface in the pH range from 3 to 8. It has been shown that for samples A and B the dependence has a maximum at pH ~ 4.5–5; and for sample C, the adsorption increases monotonically with increasing pH. It was noted that at pH ~ 5 the adsorption values for all gelatin samples were approximately equal. The adsorption activity of nanosilica concerning to proteins determined from the isotherms and the method of point measurements is compared. It has been found that the adsorption value of gelatin A onto the nanosilica at Cinitial = 700 mg/100 ml is equal to the Aave value determined by the Langmuir isotherms. This fact verifies the applicability of the method of point measurements for nanosilica/gelatin system to characterize the pharmacological activity of nanosilica based sorbents.