Background
The problem of increasing resistance against conventional antibiotics has drawn people’s attention. Therefore, the development of novel antibacterial agents with effective and safe therapeutic effects is imminent. Antimicrobial peptides (AMPs) are considered a promising class of antibacterial agents due to their broad antibacterial spectrum.
Results
In this study, on the basis of our previously studied peptide PMAP-37(F34-R), a novel antimicrobial peptide Chol-37(F34-R) was developed by N-terminal cholesterol modification to increase hydrophobicity. We observed that the N-terminal cholesterol-modified Chol-37(F34-R) showed higher antimicrobial activity than PMAP-37(F34-R) in vitro. Chol-37(F34-R) also exhibited effective anti-biofilm activity and may kill bacteria by improving the permeability of their membranes. Chol-37(F34-R) exerted high stability in different pH, salt, serum, and boiling water environments. Chol-37(F34-R) also showed no hemolytic activity and substantially low toxicity. Furthermore, Chol-37(F34-R) exhibited good potency of bacteria eradication and promoted wound healing and abscess reduction in infected mice. Meanwhile, in S. aureus ATCC25923-infected peritonitis model, Chol-37(F34-R) exhibited an impressive therapeutic effect by reducing the decrease in systemic bacterial burden and alleviating organ damage.
Conclusions
Our findings suggested that the N-terminal cholesterol modification of PMAP-37(F34-R) could improve antibacterial activity. Chol-37(F34-R) displayed excellent bactericidal efficacy and impressive therapeutic effect in vivo. Thus, Chol-37(F34-R) may be a candidate for antimicrobial agents against microbial infection in the clinic.