This comprehensive review scrutinizes tissue culture and micropropagation methodologies in geophytes, focusing on bulbous plants. The examination encompasses key stages, including somatic embryogenesis, bulb growth, dormancy breaking, and planting. Studies underscore the pivotal role of plant growth regulators (PGRs) in plant regeneration and bulb growth. Bioreactor systems for healthy plant regeneration, rooting methods, acclimatization strategies, and considerations for ex vitro survival are elucidated. The review also delves into somaclonal variation dynamics and acknowledges the burgeoning field of gene editing, particularly Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) studies, as a promising avenue for enhancing valuable compound content in geophytes. In addition to addressing challenges in flower bulb micropropagation, this review briefly highlights emerging opportunities, including the potential integration of artificial intelligence (AI) to optimize culture conditions, predict growth parameters, and enhance efficiency in bulb production. The conclusion emphasizes the necessity of a multifaceted approach integrating biochemistry, physiology, and molecular biology to address existing challenges and improve tissue culture protocols for diverse geophyte species. This review article also intends to highlight how tissue culture techniques could contribute to the development and valorization of flower bulbs in today’s scenario of the ornamental industry.