BackgroundTo assess the optical behavior of a new diffractive intraocular lens (IOL) and compare its performance to that of an established extended-depth-of-focus (EDOF) IOL.MethodsThis study assessed the Proming EDOF Multifocal AM2UX [Eyebright Medical Technology (Beijing) Co., Ltd., China] and the AT LARA 829MP [Carl Zeiss Meditec, Germany]. An experimental set-up with 0.01% fluorescein solution and monochromatic light (532nm) was used to visualize the IOLs’ ray propagation. In addition, the optical quality of the IOLs was assessed by measuring the modulation transfer function (MTF) values at 50lp/mm and 3.0 and 4.5mm apertures on the optical bench OptiSpheric® IOL PRO II [Trioptics GmbH, Germany]. ResultsThe ray propagation of the two IOLs showed two distinct foci. Light intensity assessment revealed that both IOLs allocate more energy to primary than secondary focus. At 3.0mm pupil, the MTF values at 50lp/mm for the primary focus were 0.39 and 0.37, and for the secondary focus, 0.29 and 0.26 for the AT LARA and Proming IOLs, respectively. At 4.5mm pupil, the single-frequency MTF for the primary focus was 0.51 and 0.24 and for the secondary focus 0.21 and 0.15 for the AT LARA and Proming IOLs, respectively.ConclusionsFrom the optical point of view, the Proming behaved as a low-add bifocal lens; however, its properties did not differ much from the well-established AT LARA EDOF IOL. The AT LARA outperformed the Proming at low defocus (up to 2D), while the latter demonstrated better image quality in the 2-3D range.