Background
Compatibility of entomopathogenic nematodes (EPNs) with insecticides is a crucial mainstay of integrated pest management (IPM) programs. This study was designed to evaluate the joint action of EPN species and insecticides when employed to deter 3rd and 4th larval instars of cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae) under laboratory conditions. EPNs [Steinernema carpocapsae (All strain), S. feltiae (Filipjev), Heterorhabditis bacteriophora (HP88), and H. bacteriophora (Ar-4)], at concentrations of 50, 100, and 125 IJs/larva, were tested with 3 insecticides (lambda-cyhalothrin, emamectin benzoate, and indoxacarb) at LC25 and LC50 values. Additionally, expression profiles of 2 detoxification genes (CYP6AE120 and PrGSTs1) when the 4th instar larvae were treated by H. bacteriophora (HP88) and lambda-cyhalothrin were examined.
Results
Data indicated that statistically significant mortality of 2 larval instars of P. rapae was observed in vitro among EPN species and pesticide concentrations. At concentration of 50 IJs/larva, LT50 values were 2.385 and 3.92 days for S. carpocapsae (All strain) and H. bacteriophora(Ar-4), respectively, on 3rd instar larvae; also, these values were 3.506 and 3.107 days for S. feltiae and H. bacteriophora (Ar-4), respectively, on 4th instar larvae Lambda-cyhalothrin was the most toxic insecticide, followed by emamectin benzoate and indoxacarb at LC25 and LC50, respectively. An additive effect was observed between EPN species with LC25 and LC50 of the tested insecticides, except for lambda-cyhalothrin at LC50 with H. bacteriophora (Ar-4), and indoxacarb, with all EPNs showing antagonistic effects on mortality of 3rd instar larvae after 3 days post-treatment. The interaction between the tested pesticides at LC25 and LC50 and EPN species, showed an additive effect, excluding lambda-cyhalothrin at LC25 with S. carpocapsae (All strain) and LC25 of indoxacarb with H. bacteriophora (Ar-4), which showed potentiation effects. The interaction of S. feltiae (Filipjev) with tested insecticides at LC50 exhibited an antagonistic effect on the mortality of 4th instar P. rapae larvae after 3 days post-treatment. The expression of both CYP6AE120 and PrGSTs1 was significantly up-regulated with lambda-cyhalothrin, followed by H. bacteriophora (HP88) compared to control.
Conclusions
The findings suggested that combining EPNs and the pesticide concentrations can be a practical strategy for managing P. rapae and could pave the way to using new control technologies in protecting organic farm vegetables from lepidopteran pests.