Poly-ether-ether-ketone (PEEK) and carbon fiber reinforced PEEK as orthopedic implant materials exhibit excellent material properties. Although delamination of PEEK materials has been reported in knee joint wear research, the delamination resistance behavior remains unclear. In this study, the delamination resistance of PEEK materials was investigated; these materials were compared to ultra-high molecular weight polyethylene (UHMWPE). The results of a ball-on-flat type delamination test indicated that the PEEK materials underwent delamination considerably earlier than UHMWPE, and the contact area of the PEEK materials was smaller than that of UHMWPE. Moreover, the indentation modulus, hardness, and coefficient of friction were higher for PEEK materials than for UHMWPE. The reduced tendency of PEEK materials to undergo deformation to mitigate stress concentration at low conformity contact conditions contributed to their inferior delamination resistance compared to that of UHMWPE. The delamination resistance of the PEEK materials was equivalent to that of degraded UHMWPE, which highlights the risk of delamination of PEEK implants in a clinical context. Consequently, when using PEEK materials as an implant component loaded at a low conformity contact condition, the material selection and component design must be carefully considered. Overall, the results of this study can help guide the future development of PEEK-based implants.