Biological interactions in biosensors occur through different mechanisms, on the basis of the type of biological receptor elements employed therein that confer the biological specificity to the biosensors themselves (biocatalytic, biocomplexing or bioaffinity biosensors). The use of different transduction systems (amperometric, potentiometric, field-effect transistors, piezometric and conductometric) defines the mode of detection. The interest and relevance of nanomaterials in the fabrication of nanobiosensors lie in their extraordinary properties that make them ideally suited and very promising for sensing applications. The resulting nanobiosensors are capable of sensing analytes in traces with fast, precise and accurate biological identification through miniaturised and easy to use systems. These advanced sensors are also characterised by lower detection limits, higher sensitivity values and high stability, and can further offer multi-detection possibilities. These exceptional features make nanobiosensors as the favourite tools in quality control, food safety, and traceability for their capacity of revealing and warning people against the presence of pathogens, toxins and pollutants, as well as bioterrorism agents. Despite the outstanding properties of these nanobiosensors, however, the efficiency of the biorecognition agent and the number of biorecognition sites available for interacting with target analytes can limit the sensitivity of this kind of sensors. The number of available biorecognition sites is directly related to the surface area of the sensor. Electrospinning technology can significantly increase the sensitivity of biosensors by replacing the typical planar interactive surface of conventional biosensors with a mat of electrospun nonwoven nanofibres, thereby taking advantage of the ultrahigh surface area offered by electrospun nanofibres. Moreover, adjusting the electrospinning process to produce