Aim: This in vitro study was aimed to evaluate the effect of adding different concentrations of chitosan nanoparticles (NPs) and TiO2 NPs on the shear bond strength (SBS) of an orthodontic adhesive. Materials and Methods: In this in vitro study, 72 extracted human premolars were embedded in an acrylic resin and randomly allocated into four groups of 18 specimens. In group 1 (control), brackets were bonded to the tooth with the Transbond XT orthodontic adhesive. In groups 2, 3, and 4, 0.5% chitosan NPs and 0.5% TiO2 NPs, 1% chitosan NPs and 1% TiO2 NPs, and 1.5% chitosan NPs and 1.5% TiO2 NPs were added to Transbond XT, respectively. Then, the brackets were bonded by the modified adhesive. The SBS and adhesive remnant index (ARI) of each group were assessed with a universal testing machine. The SBS test results were analyzed using one-way analysis of variance followed by the posthoc Tukey’s honestly significant difference (HSD) test. The Kruskal–Wallis test was also applied to evaluate the ARI scores. Results: The results showed no statistically significant difference between groups 1, 2, and 3, but SBS decreased significantly in group 4. With increasing the concentration of NPs up to 1% chitosan NPs and 1% TiO2 NPs, SBS did not change significantly. However, in 1.5% chitosan NPs and 1.5% TiO2 NPs, SBS decreased compared to the other three groups. No significant differences were found between the groups in terms of ARI scores. Conclusion: It is concluded that the orthodontic composite containing 1% chitosan NPs and 1% TiO2 NPs has adequate SBS for use in the clinical setting.