Purpose: Peri-implantitis is a common complication of dental implants. The first step of treatment is elimination of bacterial biofilm and disinfection of the implant surface. This study sought to compare the effects of an erbium-doped yttrium aluminum garnet (Er:YAG) laser, photodynamic therapy using an indocyanin green-based photosensitizer (ICG-based PS) and diode laser, toluidine blue O (TBO) photosensitizer and light-emitting diode (LED) light source, and 2% chlorhexidine (CHX) on biofilm of Aggregatibacter actinomycetemcomitans to sandblasted, large-grit, acid-etched (SLA) implant surfaces. Materials and Methods: Fifty SLA implants were divided into five groups and were incubated with A actinomycetemcomitans bacteria to form bacterial biofilm. Group 1 underwent Er:YAG laser radiation (with 10-Hz frequency, 100-mJ energy, and 1-W power); group 2 was subjected to LED (with 630-nm wavelength and maximum output intensity of 2.000 to 4.000 mW/cm 2 ) and TBO as a photosensitizer; group 3 was exposed to diode laser radiation (with 810-nm wavelength and 300-mW power) and ICG-based PS; and group 4 was immersed in 2% CHX. Group 5 was the control group, and the samples were rinsed with normal saline. The number of colony-forming units (CFU) per implant was then calculated. Data were analyzed using one-way analysis of variance (ANOVA), and the five groups were compared. Results: Significant differences was found between the control group and the other groups (P < .01). The lowest mean of CFU per implant count was in group 4 (P < .01), and the highest mean belonged to the control group. Photodynamic therapy by TBO + LED and ICG-based PS + diode laser was more effective than Er:YAG laser irradiation in suppression of this organism (P < .01). There was no significant difference between groups 2 and 3. Conclusion: The antibacterial effect of 2% CHX was greater than that of other understudy methods. Int J Oral MaxIllOfac IMplants 2016;31:e71-e78.