BackgroundGlossogyne tenuifolia Cassini (Hsiang-Ju in Chinese) is a perennial herb native to Penghu Islands, Taiwan. The herb is a traditional anti-pyretic and hepatoprotective used in Chinese medicine. Several studies on G. tenuifolia have demonstrated its pharmacological values of antioxidation, anti-inflammation, immunomodulation, and cytotoxicity on several human cancer cell lines. Active compounds, oleanolic acid and luteolin in G. tenuifolia are affected by several factors, including climatic change, pathogens and agricultural practices. Plant population of G. tenuifolia has been severely affected and reduced considerably in natural habitat due to the use of herbicides by farmers. Also, collection of plant material from the natural habitat is restricted to a few months in a year. Therefore, the objective of the present study was to develop an efficient micropropagation protocol for G. tenuifolia. The study also aimed to investigate the influence of in vitro growth environment on the active compounds in in vitro shoots, tissue culture raised greenhouse plants; compare the values with wild plants and commercially available crude drug.ResultsHalf-strength MS (Murashige and Skoog) basal medium supplemented with 0.1 mg/L 6-benzyladenine (BA) and 0.1 mg/L α-naphthaleneacetic acid (NAA) induced the maximum average number of shoots (7.3) per shoot tip explant excised from in vitro grown seedlings. Induction of rooting in cent percent in vitro shoots with an average number of 6.6 roots/shoot was achieved on ½ strength MS medium supplemented with 3.0 mg/L indole-3-acetic acid (IAA). The rooted plantlets acclimatized successfully in the greenhouse with a 100% survival rate. HPLC analysis revealed that the quantity of oleanolic acid and luteolin in in vitro shoots, tissue culture plants in the greenhouse, wild type plants and commercial crude drug varied depending upon the source. The oleanolic acid and luteolin contents were found to be significantly higher (16.89 mg/g and 0.84 mg/g, respectively) in 3-month old tissue culture raised plants in greenhouse compared to commercially available crude drug (6.51 mg/g, 0.13 mg/g, respectively).ConclusionsWe have successfully developed an in vitro propagation protocol for G. tenuifolia which can expedite its plant production throughout the year. The contents of oleanolic acid and luteolin in the tissue culture raised plants in the greenhouse were significantly higher than the marketed crude drug demonstrating the practical application of the tissue culture technology. These findings may be very useful in micropropagation, germplasm conservation and commercial cultivation of G. tenuifolia. So far, there is no published report on tissue culture propagation of this important medicinal plant species.Electronic supplementary materialThe online version of this article (doi:10.1186/s40529-014-0045-7) contains supplementary material, which is available to authorized users.