Treatment of GH3 cells with thyrotropin-releasing hormone (TRH) for periods up to 60 min resulted in a prolonged reduction in the cellular content of phosphatidylinositol (PtdIns) with no lasting change in the levels of the other inositol-containing phospholipids. Accompanying this was a maintained increase in the GH3 cell 1,2-diacylglycerol content and a slower decline in the level of cellular triacylglycerol. When the cells were suspended in lithium-containing balanced salt solution for 30 min (in the absence of exogenous myo-inositol), there was a 15% decrease in GH3 cell inositol levels. This was associated with a small, but significant, increase in the cellular content of phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) and 1,2-diacylglycerol. Addition of TRH to cells suspended in lithium-containing medium depleted cellular inositol levels by around 65% within 30 min. By this time, there was also a 50% reduction in the cellular content of PtdIns and a 20% reduction in phosphatidylinositol 4-phosphate (PtdIns4P). Control levels of PtdIns4,5P2 were maintained in the combined presence of TRH and lithium. Under those conditions, TRH no longer depleted cellular triacylglycerol and there was a marked increase in the ability of TRH to elevate the GH3 cell content of 1,2-diacylglycerol. The effect of TRH on the cellular content of phosphatidic acid was not altered by the presence of lithium. The results show, firstly, that when PtdIns resynthesis is inhibited by lithium-induced inositol depletion, its glycerol backbone accumulates, at least in part, in 1,2-diacylglycerol and, secondly, that GH3 cells preserve their cellular levels of PtdIns4,5P2 in the face of a considerable reduction in the cellular content of PtdIns.