Photoacoustic (PA) imaging has been developed for various clinical and preclinical applications, and acquiring pre-beamformed channel data is necessary to reconstruct these images. However, accessing these pre-beamformed channel data requires custom hardware to enable parallel beamforming, and is available for a limited number of research ultrasound platforms. To broaden the impact of clinical PA imaging, our goal is to devise a new PA reconstruction approach that uses ultrasound post-beamformed radio frequency (RF) data rather than raw channel data, because this type of data is readily available in both clinical and research ultrasound systems. In our proposed Synthetic-aperture based photoacoustic rebeamforming (SPARE) approach, post-beamformed RF data from a clinical ultrasound scanner are considered as input data for an adaptive synthetic aperture beamforming algorithm. When receive focusing is applied prior to obtaining these data, the focal point is considered as a virtual element, and synthetic aperture beamforming is implemented assuming that the photoacoustic signals are received at the virtual element. The resolution and SNR obtained with the proposed method were compared to that obtained with conventional delayand-sum beamforming with 99.87% and 91.56% agreement, respectively. In addition, we experimentally demonstrated feasibility with a pulsed laser diode setup. Results indicate that the post-beamformed RF data from any commercially available ultrasound platform can potentially be used to create PA images.