Vetiver (Chrysopogon zizanioides) is an essential oil-producing plant that has tremendous application in cosmetics, perfumery, and herbal medicine. Natural sterility and indiscriminate harvests lead to the risk of extinction of plant species in natural habitats. Therefore, a protocol for regeneration systems via organogenesis and somatic embryogenesis using node, leaf, and root explants has been standardized. The highest shoot regeneration frequency (72.2%) through organogenesis was attained from node explants on MS (Murashige & Skoog) medium comprising 2.0 mg L-1 BAP (“6-benzylaminopurine”). Concurrently, leaf explants cultivated on MS medium augmented by 1.0 mg L-1, 2, 4-D (“2, 4-dichlorophenoxyacetic acid”) formed the optimal frequency (75.35%) of white friable compact (WFC) callus. However, the root explant was less responsive for WFC callus induction. Organogenic WFC callus cultivated on MS medium fortified by kinetin (1.0 mg L-1) as well as BAP (1.0 mg L-1) revealed the highest shoot regeneration efficiency (75.49%) with 48 shoots per callus. Adventitious shoots obtained from node and WFC callus of both leaf and root explants cultivated on MS medium increased by NAA (2.0 mg L-1 showed the optimal rooting of 76.97%. Concomitantly, an elevated frequency of somatic embryogenesis (52.50%) was recorded from leaf explants on MS medium using BAP (0.5 mg L-1) & 2, 4-D (1.0 mg L-1). Leaf explants were superior to node and root explants for somatic embryo initiation. The cotyledonary embryos were efficiently germinated into complete plantlets on a hormone-free MS medium. The plantlets gathered from organogenesis & somatic embryo genesis was effectively acclimatized into phenomenally similar plants. This technique may be applicable for wide-range propagation, genetic engineering, and the formation of bioactive compounds.