The tissue culture regeneration system of Lupinus albus has always been considered as recalcitrant material due to its genotype-dependent response and low regeneration efficiency that hamper the use of genetic engineering. Establishment of repeatable plant regeneration protocol is a prerequisite tool for successful application of genetic engineering. This aim of this study was to develop standardized, efficient protocol for successful shoot induction from cotyledonary node of white lupin. In this study, 5 day old aseptically cultured seedlings were used to prepare three explants (half cotyledonary node, HCN; whole cotyledonary node, WCN; and traditional cotyledonary node, TCN), cultured on four concentrations of M519 medium (M519, ½ M519, 1/3 M519, and ¼ M519), containing four carbohydrate sources (sucrose, fructose, maltose, and glucose), and stimulated with various combinations of KT (kinetin), and NAA (naphthalene acetic acid) for direct shoot regeneration. High frequency of 80% shoot regeneration was obtained on ½ M519 medium (KT 4.0 mg L−1 + NAA 0.1 mg L−1) by using HCN as an explant. Interestingly, combinations of (KT 4.0 mg L−1 + NAA 0.1 mg L−1 + BAP 1.67 mg L−1), and (KT 2.0 mg L−1 + NAA 0.1 mg L−1) showed similar shoot regeneration frequency of 60%. Augmentation of 0.25 g L−1 activated charcoal (AC) not only reduced browning effect but also improved shoot elongation. Among the all carbohydrate sources, sucrose showed the highest regeneration frequency with HCN. Additionally, 80% rooting frequency was recorded on ½ M519 containing IAA 1.0 mg L−1 + KT 0.1 mg L−1 (indole acetic acid) after 28 days of culturing. The present study describes establishment of an efficient and successful protocol for direct plant regeneration of white lupin from different cotyledonary nodes.