“…Exogenous application of SA may affect a variety of plant processes and attributes, such as photosynthesis and photosynthetic pigments (Khan et al 2003;Maurya et al 2019), respiratory pathways (Khan et al 2003), ethylene biosynthesis (Khan et al 2013), seed germination (Lee et al 2010), flower induction (Cleland and Tanaka 1979), thermogenesis (Rhoads and McIntosh 1992), ion uptake and transport (Harper and Balke 1981;Gondor et al 2016), nitrate reductase activity (Fariduddin et al 2003), protein content (Latif et al 2016), growth parameters (Damalas 2019), biomass production (Maurya et al 2019), plant water relations (Hayat et al 2010), stomatal closure (Khan et al 2003), accumulation of osmolytes (e.g., proline, glycine betaine, polyamines, and soluble sugars) (Khan et al 2014;Madany et al 2020;Shemi et al 2021), secondary metabolite content (e.g., alkaloids, flavonoids, and phenolics) (for review see Nandy et al 2021), allelopathic properties (Shettel and Balke 1983), antioxidant defense system (Maurya et al 2019), and senescence (Rivas-San Vicente and Plasencia 2011). It can also alleviate environmental stresses, such as heat (Khan et al 2013), cold (Saleem et al 2020), drought, (Sohag et al 2020), UV-B/C radiation (Li et al 2014;Abrun et al 2016), salinity (Elazab and Youssef 2017), and heavy metals toxicity (Sharma et al 2020), and protect plants from a range of pathogens (Bakker et al 2014). The effect of exogenous SA is influenced by factors such as the plant species, its stage of development, tissue and organ type, mode of application, dose and duration of exposure, environmental and culture conditions, and its endogenous level in the plant (Horváth et al 2007;…”