Based on the place of its origin, pear tree (Pyrus spp.) is largely divided into European pears (P. communis, cultivated mainly in Europe and the U.S.) and Asian pears (P. pyrifolia, P. bretschneideri, and P. ussuriensis, distributed and grown in East Asian countries including China, Japan, and Korea). Most pear trees have 17 chromosomes (diploidy, 2n=2x=34). Their genetic studies and precise cultivar breeding are highly restricted by conditions such as self-incompatibility controlled by S-locus and juvenility as one major character of fruit crops. Genetic studies on Pyrus have been promoted by the development of various molecular markers. These markers are being utilized actively in various genetic studies, including genetic relationship analysis, genetic mapping, and QTL analysis. In addition, research on pear genetic linkage maps has been extended to studies for the identification of QTL for target traits such as disease resistance and genetic loci of useful traits. NGS technology has radically reduced sequencing expenses based on massive parallel reactions to enable high-capacity and high-efficiency. NGS based genome analyses have been completed for Chinese pear 'Danshansuli' and European pear 'Bartlett'. In Korea, GWAS for agricultural valuable traits such as floral structure, ripening, and total soluble contents have been conducted through resequencing. GBS has been performed for 'Whangkeumbae', 'Cheongsilri', and 'Minibae'.