BackgroundPresent study aimed to better understand the potential apoptotic pathways that involved in docosahexaenoic acid (DHA)-induced apoptosis of prostate cancer cells.MethodsHuman prostate cancer DU145 cells were treated with different concentrations of fish oil, omega-3 PUFA (DHA, and Eicosapentaenoic acid, EPA), or omega-6 PUFA (Arachidonic acid, AA). Cell viability and apoptosis were evaluated by MTT assay and Hoechst staining. Pathway-focused gene expression profiling of DU145 cells was analyzed with the RT2 Profile PCR Array System. The results were verified by real time quantitative polymerase chain reaction (RT-qPCR).ResultsAA exposure showed no obvious effect on viability of DU145 cells. However, exposure with fish oil, EPA, or DHA for 24 h significantly affected cell viability. The growth inhibition of DHA was more pronounced than that of EPA and showed a time-dependent increase. DHA exposure caused typical apoptotic characteristics. Ten genes were more expressed, while 5 genes were less expressed following DHA exposure. RT-qPCR confirmed the time dependent effect of DHA on the expression of these differentially expressed genes. KEGG pathway analysis showed that DHA may induce the apoptosis of cancer cells preferentially through mediating P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways.ConclusionOur study demonstrated the beneficial action of DHA on human prostate carcinoma cell line DU145. The pro-apoptotic effect of DHA on DU145 cells may involve mediation various pathways, especially P53, MAPK, TNF, PI3K/AKT, and NF-κB signaling pathways. Molecular mechanisms of DHA on apoptosis of cancer cells still need to be further clarified.Electronic supplementary materialThe online version of this article (doi:10.1186/s12944-017-0442-5) contains supplementary material, which is available to authorized users.