Peripheral artery disease (PAD) is a flow-limiting condition caused by narrowing of the peripheral arteries typically due to atherosclerosis. It affects almost 200 million people globally with patients either being asymptomatic or presenting with claudication or critical or acute limb ischemia. PAD-affected patients display increased mortality rates, rendering their management critical. Endovascular interventions have proven crucial in PAD treatment and decreasing mortality and have significantly increased over the past years. However, for the functional assessment of the outcomes of revascularization procedures for the treatment of PAD, the same tests that have been used over the past decades are still being employed. Those only allow an indirect evaluation, while an objective quantification of limb perfusion is not feasible. Standard intraarterial angiography only demonstrates post-intervention vessel patency, hence is unable to accurately estimate actual limb perfusion and is incapable of quantifying treatment outcome. Therefore, there is a significant necessity for real-time objectively measurable procedural outcomes of limb perfusion that will allow vascular experts to intraoperatively quantify and assess outcomes, thus optimizing treatment, obviating misinterpretation, and providing significantly improved clinical results. The purpose of this review is to familiarize readers with the currently available perfusion-assessment methods and to evaluate possible prospects.