Abstract:Medical ultrasound is an imaging technique that utilizes ultrasonic signals as information carriers, and has wide applications such as seeing internal body structures, finding a source of a disease, and examining pregnant women. The most commonly used ultrasonic transducer today is based on piezoelectricity. The piezoelectric transducer, however, may have a limited bandwidth and insufficient sensitivity for reduced element size. Laser-generated ultrasound (LGUS) technique is an effective way to resolve these issues. The LGUS approach based on photoacoustic effect is able to greatly enhance the bandwidth of ultrasound signals and has the potential for high-resolution imaging. High-amplitude LGUS could also be used for therapy to accomplish high precision surgery without an incision. Furthermore, LGUS in conjunction with optical detection of ultrasound allows all-optical ultrasound imaging (i.e., ultrasound is generated and received optically). The all-optical platform offers unique advantages in providing high-resolution information and in facilitating the construction of miniature probes for endoscopic ultrasound. In this article, a detailed review of the recent development of various LGUS transmitters is presented. In addition, a recent research interest in all-optical ultrasound imaging, as well as its applications, is also discussed.