Here, we show CRISPR/Cas9-based targeted somatic multiplexmutagenesis and its application for high-throughput analysis of gene function in mice. Using hepatic single guide RNA (sgRNA) delivery, we targeted large gene sets to induce hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). We observed Darwinian selection of target genes, which suppress tumorigenesis in the respective cellular/tissue context, such as Pten or Cdkn2a, and conversely found low frequency of Brca1/2 alterations, explaining mutational spectra in human ICC/HCC. Our studies show that multiplexed CRISPR/Cas9 can be used for recessive genetic screening or high-throughput cancer gene validation in mice. The analysis of CRISPR/Cas9-induced tumors provided support for a major role of chromatin modifiers in hepatobiliary tumorigenesis, including that of ARID family proteins, which have recently been reported to be mutated in ICC/HCC. We have also comprehensively characterized the frequency and size of chromosomal alterations induced by combinatorial sgRNA delivery and describe related limitations of CRISPR/Cas9 multiplexing, as well as opportunities for chromosome engineering in the context of hepatobiliary tumorigenesis. Our study describes novel approaches to model and study cancer in a high-throughput multiplexed format that will facilitate the functional annotation of cancer genomes.in vivo CRISPR/Cas9 | somatic multiplex-mutagenesis | hepatocellular carcinoma | intrahepatic cholangiocarcinoma | chromosome engineering F or decades, a major bottleneck in cancer research has been our limited ability to identify genetic alterations in cancer. The revolution in array-based and sequencing technologies and the recent development of insertional mutagenesis tools in animal models enable the discovery of cancer-associated genetic alterations on a genome-wide scale in a high-throughput manner. Nextgeneration sequencing (NGS) of cancer genomes and transposonbased genetic screening in mice, for example, are currently creating large catalogs of putative cancer genes for principally all cancer types (1-3). A challenge for the next decades will be to validate the causative cancer relevance of these large gene sets (to distinguish drivers from passengers) and to understand their biological function. Moreover, pinpointing downstream targets of mutated cancer genes or drivers among the thousands of transcriptionally or epigenetically dysregulated genes within individual cancers is complex and limited by the lack of tools for high-throughput functional cancer genomic analyses.The development of technologies for targeted manipulation of the mouse germ line has opened tremendous opportunities to study gene function (4, 5). Mouse models recapitulate the extensive biological complexity of human cancer and have given insights into many fundamental aspects of the disease that can be studied only at an organismal level (6). However, the speed and efficiency of such studies is limited by the long time frames needed to genetically engineer, intercross,...