To develop and evaluate the clinical application of a multimodal colposcopy combining multispectral reflectance, autofluorescence, and red, green, blue (RGB) imaging for noninvasive characterization of cervical intraepithelial neoplasia (CIN). We developed a multimodal colposcopy system that combined multispectral reflectance, autofluorescence, and RGB imaging for noninvasive characterization of CIN. We studied the optical properties of cervical tissue first; then the imaging system was designed and tested in a clinical trial where comprehensive datasets were acquired and analyzed to differentiate between squamous normal and high grade types of cervical tissue. The custom-designed multimodal colposcopy is capable of acquiring multispectral reflectance images, autofluorescence images, and RGB images of cervical tissue consecutively. The classification algorithm was employed on both normal and abnormal cases for image segmentation. The performance characteristics of this system were comparable to the gold standard histopathologic measurements with statistical significance. Our pilot study demonstrated the clinical potential of this multimodal colposcopic system for noninvasive characterization of CIN. The proposed system was simple, noninvasive, cost-effective, and portable, making it a suitable device for deployment in developing countries or rural regions of limited resources.