We have constructed a recombinant adeno-associated virus serotype 2 vector encoding human interleukin 10 (rAAVhIL10). IL-10 is a potent antiinflammatory/immune cytokine, which has received growing attention for its therapeutic potential. Human IL-10 (hIL-10) production was virus dose dependent after in vitro infection of HSG cells, a human submandibular gland cell line. The vector-derived hIL-10 produced was biologically active, as the medium from rAAVhIL10-infected HSG cells caused a dose-dependent blockade of IL-12 secretion from spleen cells of IL-10 knockout mice challenged with heat-killed Brucella abortus. Administration of rAAVhIL10 (10(10) genomes per gland) to both mouse submandibular glands led to hIL-10 secretion into the bloodstream (approximately 1-5 pg/ml), that is, in an endocrine manner, which was stable for approximately 2 months. Salivary gland administration of rAAVhIL10 under experimental conditions was more efficacious than intravenous administration (approximately 0.5-0.7 pg/ml). Also, hIL-10 was readily secreted in vitro from organ cultures of minced submandibular glands infected with rAAVhIL10, 6 or 8 weeks earlier. Consistent with these results, hIL-10 mRNA was detected by reverse transcription-polymerase chain reaction in submandibular glands of mice infected with rAAVhIL10 but not from control mice. At these doses, little to no hIL-10 was detected in mouse saliva. Using a rAAV serotype 2 vector encoding beta-galactosidase, we observed that the primary parenchymal target cells were ductal. These findings represent the first report of rAAV use to target exocrine glands for systemic secretion of a therapeutic protein, and support the notion that rAAV serotype 2 vectors may be useful in salivary glands for local (periglandular) and systemic gene-based protein therapeutics.